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FOREWORD 
 

As Army weapons systems become increasingly complex, we must ensure that training 
can keep pace.  This is a primary mission of the U.S. Army Research Institute for the Behavioral 
and Social Sciences (ARI).  Are there ways of improving trainability by mitigating inherent 
complexities?  One promising technique for doing this is through highly-usable intelligent user 
interfaces. 

 
This Phase I Small Business Innovation Research Program (SBIR) effort explored the 

feasibility of interface agents for simplifying the command and control of multiple unmanned 
vehicles.  The research goal was to design a suitable architecture for exploring and creating 
interface agents compatible with the Army’s Command, Control, Communication, Computer, 
Intelligence, Surveillance, and Reconnaissance (C4ISR) systems.  This architecture was 
implemented and tested in simulation using a simple battle scenario.  This initial test of technical 
feasibility allows for further research to determine how such interface agents could be used, 
whether they can truly reduce operator workload and improve performance, and the parameters 
of such usage within the context of robotic command and control.  Determining the factors 
relevant to intelligent task support is critical for the Future Combat Systems program if it is to 
deliver on its promise of reducing manpower and dramatically improving the Army’s force 
capabilities. 

 
This research was part of ARI’s Future Battlefield Conditions (FBC) team efforts to 

enhance soldier preparedness through development of training and evaluation methods to meet 
future battlefield conditions.  This report represents efforts for Work Package 211, Techniques 
and Tools for C4ISR Training of Commanders and Staffs in Future Combat Systems Units 
(FUTURETRAIN).  Results of this effort and plans for the Phase II effort were reviewed by 
representatives from the Army’s SBIR program.  As a result of the Phase I success, the Phase II 
effort was awarded, and an interface agent system should be available for commercial 
application by January 2005. 

 
 
 
 

    KATHLEEN A. QUINKERT 
    Acting Technical Director 
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COOPERATIVE INTERFACE AGENTS FOR NETWORKED COMMAND, CONTROL, 
AND COMMUNICATIONS (CIANC3):  PHASE I FINAL REPORT 
 
 
EXECUTIVE SUMMARY 
 
Research Requirement: 
 

The vision of the Army’s Future Combat Systems (FCS) includes the use of mixed teams 
of human and robotic forces on a dynamic and rapidly changing battlefield.  Implementing the 
vision will include a shift from manual, human control of weapons systems to semi- and fully 
autonomous control over mixed systems of humans and non-human entities.  It will also entail an 
overall force reduction that will require multiple entities to be controlled by individual team 
leaders and multiple teams to be led by higher-echelon commanders.  To accomplish this, 
systems will have to be designed to require less human interaction and greater robotic autonomy.  
Successful implementation of this shift will require autonomous and semi-autonomous robotic 
forces and a command and control infrastructure that will allow human, robotic, and mixed 
teams to be controlled quickly and easily.  One key to this will be the degree to which teams and 
individual robots are autonomous.  A second is whether the commander’s human-machine 
interface is designed such that the commander is not overloaded with constant system interaction 
allowing him or her to focus on the mission.  The focus of this project has been to identify the 
human-interface issues, design potential solutions and create software that supports the 
commander’s tasks and mitigates human performance limitations in the context of robotic 
command and control. 

 
The overall research goals for this project were to determine whether a specific class of 

software agent, autonomous intelligent interface agents, could be created to reduce the 
complexities inherent in controlling multiple unmanned vehicles.  Furthermore, if such a system 
could be built, how could it best be used and would it fundamentally improve operator 
performance.  Finally, if such a system were useful, how could future warfighters be effectively 
trained to control multiple robots. 

 
The technical objective for Phase I of this project was to demonstrate the feasibility of a 

cooperative multi-agent system for control of battlefield robots.  That is, the project was to 
determine whether an agent framework built around the three specified agent types, tasking, 
coordinating, and monitoring, could be constructed to add an intelligent abstraction layer 
between human military commanders and robotic battlefield entities. 
 
Procedure: 
 

Under Phase I of this Small Business Innovative Research contract, we researched 
methods for effectively controlling FCS units containing mixed human and robotic elements.  
Our objective was to determine whether an agent framework built around three specified agent 
types (Tasking, Coordinating, and Monitoring) could be constructed to add an intelligent 
abstraction layer between human commanders and battlefield elements.  The focus was to 

  



 

identify human-system interaction issues, design potential solutions, and create software that 
supports the commander’s tasks and mitigates inherent human performance limitations. 

 
During the initial phase of this project we progressed in several areas.  Major 

accomplishments of Phase I included: 
 
�� A working scenario was defined on which to determine project feasibility. 
�� Architectural tradeoffs were discussed culminating in a working system and 

communication architecture. 
�� Necessary inter-agent communications protocols to perform the scenario were 

designed. 
�� Soar was integrated into the Operator Control Unit (OCU)/OneSAF TestBed (OTB) 

code base. 
�� A Soar-language prototype multi-agent C3I support system was developed and tested. 
�� A prototype user interface for the multi-agent system was designed and implemented. 

 
Findings: 
 

The agent and communication system designs were successfully implemented in a 
simulation environment, the Operator Control Unit (OCU).  A scenario was created to test the 
system using a simple combination of a sensor-vehicle (UAV) and a shooter-vehicle (UGV).  
The UGV took the tasking to seek and destroy a suspected enemy.  The UGV tasked a UAV to 
locate and acquire the target.  The UAV located the target and transmitted the coordinates to the 
UGV, which then confirmed with the human operator before firing on, and destroying the target. 

 
The scenario was simple enough to test and demonstrate the capabilities of the interface-

agent architecture, but it was not complex enough to demonstrate any real utility to robotic 
controllers.  In addition, the Tasking agent accomplished most of the background work.  A more 
complex scenario will place more demands on the Coordinating and Monitoring agents, driving 
their further elaboration. 

 
In summary, Phase I successfully demonstrated the technical feasibility of interface 

agents for robotic command and control.  It also provided the necessary infrastructure and 
techniques necessary to rapidly explore much more of the problem space. 
 
Utilization of Findings: 
 

Phase II will expand the target scenario by implementing some portion of an Army 
approved FCS scenario.  Phase II will further develop the agent and communication 
architectures, the agents, domain-specific behaviors, and the user interface.  Phase II will 
integrate speech and voice recognition into the OCU and instrument it to collect human and 
system data.  Phase II will identify and explore a variety of human factors involved in robotic C2 
and conduct task analyses as necessary.  At appropriate points in the project, the system will be 
evaluated by civilian and military personnel.  By the end of Phase II, January 2005, the Army 
and commercial sectors should benefit from an interface architecture that helps manage robotic 
systems and reduce users’ knowledge and training requirements. 
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COOPERATIVE INTERFACE AGENTS FOR NETWORKED COMMAND, CONTROL, 
AND COMMUNICATIONS (CIANC3):  PHASE I FINAL REPORT 

 
Phase I 

 
Identification and Significance of the Problem 
 

The vision of the future for armored and mechanized military structure, as spelled out by 
(Defense Advanced Research Projects Agency, 2001), includes the use of mixed teams of human 
and robotic forces on a dynamic and rapidly changing battlefield.  Implementing the vision will 
include a shift from complete human control of weapons systems to mixed systems of humans 
and non-human entities.  It will also entail an overall force reduction that will require multiple 
entities to be controlled by individual team leaders and multiple teams to be lead by higher-
echelon commanders.  To accomplish this, systems will have to be designed to require less 
human interaction and greater robotic autonomy.  Successful implementation of this shift will 
require autonomous and semi-autonomous robotic forces and a command and control 
infrastructure that will allow human, robotic, and mixed teams to be controlled quickly and 
easily.  Two keys to this will be the degree to which teams and individual robots are 
autonomous, and whether the commander’s human-machine interface is designed such that the 
commander has superior awareness of the situation.  Heightened awareness will afford the 
commander the ability to rapidly create and execute battle plans.  The focus of this project has 
been to identify the human-interface issues, design potential solutions and create software that 
supports the commander’s tasks and mitigates human performance limitations. 

 
To illustrate the limitations of current control technologies, consider how OneSAF Test 

bed (OTB) users currently specify the behavior of simulated semi-autonomous entities.  Figure 1 
shows a typical OTB screen for specifying the travel orders for a simulated battlefield entity.   
There are 15 main sections of information for input.  Even if the user were able to complete each 
section in 4 seconds it would require at least 1 minute to complete this screen.  Firing orders and 
other necessary plans and contingencies would take additional time.  While this level of 
performance may be acceptable for simulation purposes, it is clearly not acceptable for 
battlefield performance, especially considering that such steps might be necessary for each 
vehicle.  The main point is that time to respond to various battlefield events (such as a movement 
order) is likely to be much longer than time available.  If instead, the commander had given the 
order to a human staff assistant, the assistant would be able to determine many of the details 
necessary to specify the commander’s intent.  For example, unit type, readiness state, enemy 
proximity and disposition, and mission type could be used to infer much of the information 
required by the OTB dialog box.  Since much of the information required can be determined 
from unit standard operating procedure (SOP) or can be inferred by a subordinate from the 
mission profile, this type of command and control problem lends itself to expert system solutions 
and/or other forms of performance enhancing technologies. 
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Figure 1. OTB movement dialog box. To specify travel orders for a simulated entity, the user 
completes the fields. With 15 main sections, completing all the necessary data is too slow for 
battlefield performance. 

 
Military commanders will face similar command and control issues when leading mixed 

units of live and robotic entities.  The problem is that current unmanned systems require too 
much human control to meet the goal of one controller per multiple battlefield entities. For 
example, the Predator unmanned aerial vehicle requires a minimum of three people to operate it, 
one officer and two senior non-commissioned officers.  In order to meet the force transformation 
goals, the information and interaction needs of future robotic systems will need to be reduced to 
allow multiple robots to be controlled by a single human.  This goal can only be realized through 
increased robotic autonomy and improved human-machine interaction.  We propose to build on 
our Phase I efforts to further develop an innovative system of cooperative intelligent interface 
agents for network command, control, and communication. 

 
Background 

Robotic Battlefield Entities 
 

An overall goal of the FCS program is to transform the current military structure, 
operations, strategies and tactics to create a force that is more responsive, deployable, agile, 
versatile, lethal, survivable, and sustainable.  One implementation strategy to achieve this goal is 
to split the roles of battlefield entities to create smaller, more specialized platforms that will 
operate cooperatively in a much more effective manner than currently possible.  This will 
include at least the following battlefield platforms: manned vehicles, direct fire vehicles, indirect 
fire, beyond-line of sight (BLOS) vehicles, sensor vehicles, unmanned aerial vehicles, and other 
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layered sensors such as satellites (c.f. Van Fosson, 2001; and Defense Advanced Research 
Projects Agency, 2000).  Other research is addressing low-level issues regarding autonomous 
robot control, such as cooperative path planning, team selection and tactics, and dealing with 
uncertainty, e.g. the MICA project (Defense Advanced Research Projects Agency BAA #01-029, 
2001).  The present work will develop software techniques and technologies that will allow 
human commanders to control the robot teams in a similar manner to how they command human 
teams, that is, in the language of the military, not the language of robotic control theory.  In 
addition, it will address command and control for higher echelons and for cooperative actions 
across echelons. 
 
Human-Machine Interaction and Supervisory Control 
 

The overall goal of the human-machine interface design for this project is to maximize 
human performance by creating a system that allows users to perform military tasks without 
focusing on the computer system used.  This requires a system that is efficient to use, easy to 
learn, easy to remember, and error-tolerant.  Two approaches that have been taken to improve 
usability are direct-manipulation and intelligent interfaces.  Direct manipulation interfaces stress 
the accurate visualization of large amounts of data (Shneiderman & Maes, 1997). These 
interfaces also enable users to directly manipulate and select data by pointing, and other rapid, 
incremental, and reversible actions that provide immediate feedback.  One technique for 
maximizing usability is to automate mundane and time-consuming tasks with software.  Previous 
efforts at automating system tasks have achieved mixed results often because supervisory control 
issues (Leveson, 1995; Sheridan, 2000) were not adequately addressed.  Effectively automating 
system functions requires a delicate balance of reducing tedious tasks and overall operator 
workload, and maintaining adequate human control (both real and perceived) and vigilance.  For 
example, users will become complacent in monitoring-only tasks, such as monitoring status 
gauges or security cameras, and become more prone to errors.  They need to be kept engaged and 
they need to maintain their skills for times when automated systems are inadequate.  Task-
analytic techniques can be used to address the supervisory control problem, enabling designs that 
will include the right mix of human and automated control.  One way of implementing 
supervisory control software is through software interface agents. 
 
Agents and Multi-Agent Systems 
 

The challenge of developing complex agent-based systems is to first determine the most 
appropriate representation and reasoning framework for individual agents and then to determine 
how the many agents will communicate and cooperate.  Individual agents can vary greatly in the 
expressiveness and power of their knowledge, procedural representations, reasoning algorithms, 
and capabilities.  Multi-agent systems can vary widely in the manner in which the agents are 
organized, the language and protocols used to interact, and the coordination and problem solving 
paradigms they utilize to complete their tasks.  This section will clarify what is meant by an 
“intelligent agent,” discuss agent frameworks, and introduce a number of issues inherent in all 
multi-agent systems.  
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What do we mean by the term “intelligent agent?”  An informal, intuitive definition is: 
“intelligent” - having knowledge/expertise, and “agent” - a software-based process that can do a 
task for someone or something else (e.g., a travel agent). 

 
The following is a more formal, yet still quite weak, definition of agents that is adapted 

from (Wooldridge, 2000): 
 

Agent - a software-based computer system that has the following properties: 
 

�� Autonomy - acts without the direct intervention of humans or others and with some  
      control over their actions and internal state. 
�� Social ability - interacts with other agents and possibly humans. 
�� Reactivity - responds in a timely manner to changes in the environment. 
�� Pro-activeness - exhibits goal-directed behavior. 

 
A stronger notion of agency is based on the Beliefs-Desires-Intents (BDI) framework 

(Wooldridge, 2000).  It is widely held by the Artificial Intelligence (AI) community that, in 
addition to the weak, formal properties, the software process must conceptually or explicitly 
embody humanistic characteristics such as: 

 
�� Knowledge and Beliefs - facts or belief about environment (including other agents) or 

internal state. 
�� Desires and Goals - motivations for acting. 
�� Intentions - commitments to courses of action based upon motivations. 
�� Obligations - commitments to other agents. 
�� Rationality - actions are purposeful toward achievement of goals. 

 
The agent research and development for this effort, and the specific expertise of Soar 

Technology and Intelligent Reasoning Systems, focuses primarily on building agents that 
embody this stronger notion of agency. 

 
There are many “agent” architectures such as Aglets and JAVA Agent Template (JAT) 

from IBM, Agent Tcl (Gray, Kotz, Cybenko & Rus, 1997) from Dartmouth, and Agents for 
Remote Action (ARA) (Peine & Stolpmann, 1997) from the University of Kaiserslautern that 
have little or no explicit representations of any of the mentalistic attributes of beliefs, intentions, 
capabilities, or even goals (often argued to be the key feature of agency).  Furthermore, 
programmers encode the behavior of these agents almost completely through low-level hard 
coding.  Each of these agents provides specialized functionality in some focus area (e.g., ARA 
and Agent Tcl are specialized to provide mobility capabilities) but do not otherwise provide what 
we consider a complete reasoning architecture. 

 
Agent architectures such as Soar (Laird, Newell & Rosenbloom, 1987) and AOP-based 

(Agent-Oriented Programming) (Shoham, 1993) architectures such as Agent-0 (Shoham, 1991), 
LALO, and PLACA (Thomas, 1995) all provide significantly more complete representation and 
reasoning frameworks than those mentioned in the preceding paragraph.  Soar implements a 
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unified theory of cognition (Newell, 1990) and provides a wide range of desired agent 
architecture capabilities, including integrated execution, means-ends planning, meta-level 
reasoning, and learning.  The AOP-based architectures provide explicit internal representations 
of mentalistic concepts such as beliefs and commitments but they emphasize social interaction 
capabilities over individual capabilities (even though PLACA does extend the AOP paradigm to 
include generative planning capabilities). 

 
In addition to these primarily monolithic agent architectures are a number of multi-level 

agent architectures such as Touring Machines (Ferguson, 1992), Atlantis (Gat, 1992), and 
InteRRap (Muller & Pischel, 1994).  Agent architectures of this style vary widely in their 
theoretical foundation, internal representations, architectural components, and particular 
emphasis on specific representational or behavioral issues or application domain.  One common 
problem with multi-layer architectures is that they require a specialized programming language 
for each layer (e.g., reactive layer language, scheduling layer language, planning layer language, 
coordination layer language).  None of these architectures provides as mature or cohesive a 
theoretical basis as that provided by the BDI theory. 

 
There are many challenging issues that must be addressed when developing multi-agent 

systems.  This includes how the agents are organized and what role the agents play within the 
organization (Birmingham, D’Ambrosio, Darr & Durfee, 1994; Fox, 1988).  Within the FCS 
system, much of the agents’ organization will be dictated by military doctrine.  However, with 
multiple agents associated with each unmanned vehicle operator and the possibility of combat 
losses, the static and dynamic organization and role determination (Corkill, 1982; So & Durfee, 
1994; So & Durfee, 1997) will be important issues to address. 

 
Another important issue in multi-agent systems is determining what communication 

language semantics and syntax the agents will use at both the performative and content level 
(FIPA: Foundation for Intelligent Physical Agents, 2000; Labrou, 1996; Cohen & Levesque, 
1990; Huber, 1999).  The performative level is associated with the intention of the message, such 
as whether it is a directive (command, question, or request), an assertive (information/knowledge 
passing), a commissive (commitment forming), etc. (Searle, 1970).  The content level is 
associated with the specifics of the communication, such as the task being requested or the 
information being passed, and is almost always domain specific. 

 
Entities within organizations tend to interact with each other in regular, standard patterns 

and this holds true for intelligent agents as well.  These interaction patterns simplify agent 
reasoning by constraining agent behavior and facilitate creation of expectations and standard 
behavior models of other agents.  Capturing these patterns, commonly called conversation 
policies or interaction protocols (Bradshaw, Dutfield, Benoit & Wooley, 1997; FIPA, 2000; 
Kumar, Cohen & McGee, 2001; Labrou & Finin, 1997), is required in any complex multi-agent 
environment and needs to reflect, for example, any authority relationships that exist between 
agents (John & Kieras, 1996). 

 
The manner in which the agents work together to complete their tasks is crucial to the 

agents’ performance in any domain, and has been the topic of a great deal of research.  There are 
many factors involved with determining the problem-solving paradigm of the multi-agent 
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system.  Just a few issues include whether problem solving is done in a centralized or 
decentralized manner (Fox, 1988; Durfee, Kenny & Kluge, 1998), whether tasks are distributed 
or can be handled by a single agent (Gasser & Hill, 1990), the level of robustness and fault 
tolerance required in the domain (Kumar & Cohen, 2000; Rosenschein, 1985), the level of 
uncertainty and rate of change in the environment (Fox, 1979), whether a static problem solving 
scheme will be used or whether the problem solving scheme can be dynamically changed 
(Decker & Lesser, 1995; Rosenschein, 1985). 
 
Interface Agents 
 

Interface agents (Laurel, 1991) are a specific form of agents designed to reduce the 
complexity of human-system interaction.  Such agents can take the form of relatively simple 
agents for performing single, well-defined tasks such as filtering mail, or they can be fairly 
complex for more complicated tasks such as seeking out useful information or websites 
(Lieberman, 1997).  Fundamentally, interface agents represent an additional, simplifying layer of 
abstraction between a user and a computer system.  While some agents operate solely in the 
background, interface agents are designed as user interface elements that can directly assist users 
with their tasks.  This can include assistance with input tasks that facilitate the specification of 
complex commands to decrease task execution time and improve accuracy.  Interface agents can 
also assist with information output, interpreting raw data or filtering necessary information from 
non-relevant data.  

 
A weakness of some of the previous work on intelligent interface agents is that human 

operators needed a significant amount of training and they had to think in terms dictated by the 
software agents.  A goal of intelligent interface design is to make the interface invisible (Maes, 
1994).  This is not to say that interface elements can ever fully disappear, but rather that the 
translation between the user’s mental model of the task and the computer’s model for the task is 
minimized.  This idea is a core tenet of usability:  The user should be able to focus on the 
primary task, and not the technology used to accomplish that task.  One way of approaching this 
is by merging software-agent technology with proven direct manipulation techniques 
(Shneiderman & Maes, 1997). 

 
Phase I Technical Objectives and Approach 

 
The Vision:  Cooperative Teams of Soar Interface Agents 
 

Interface agents were constructed using production rules in the Soar Cognitive 
Architecture.  An agent communications protocol was developed using FIPA as the language 
basis.  In general, agents were designed such that declarative information, such as weapon 
characteristics, are stored in data files so that it can easily be modified.  Procedural knowledge, 
such as tactical heuristics, was encoded using productions.  The procedural knowledge was 
modularized within Soar to allow for maximal reuse of all encoded knowledge. 

 
Each of the agent types was also modularized according to the roles they play.  Tasking 

agents are designed to incorporate reasoning about order types, weapon types, enemy weapon 
types, and other necessary information.  Coordinating agents include knowledge of 
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communication formats and procedures, and heuristics for coordinating with other units.  
Monitoring agents include knowledge of event types, how to prioritize them, how to filter them, 
etc.  In addition, there is also the need for a meta-layer of agent knowledge that specifies rules 
for inter-agent communication. 
 
Technical Objectives 
 

The technical objectives for this SBIR are to demonstrate the feasibility of a CIANC3-like 
system for control of battlefield robots.  That is, the project will determine whether an agent 
framework built around the three specified agent types can be constructed to add an intelligent 
abstraction layer between human military commanders and robotic battlefield entities.  Phase I 
demonstrated feasibility on a technical level.  Phase II will test whether such a system will 
actually benefit FCS commanders.  There are many issues that will not be specifically addressed, 
such as, what are the best interaction techniques for optimal object selection, or how best can this 
system be integrated into the military command structure.  The technical objectives of this 
project are: 
 

1. Determine human information needs for controlling mixed human and robotic teams. 
2. Determine appropriate levels of automation for human tasks that will reduce cognitive 

workload yet maintain sufficient human control. 
3. Determine suitable high-level architecture for interface agent organization and develop 

inter-agent interaction protocol. 
4. Develop usable human interface to software agents that will demonstrate agent 

interactions, demonstrate abstract-to-concrete command translation, and allow testing of 
target scenario. 

5. Determine scalability of system and develop more complex scenario to demonstrate these 
capabilities. 

6. Further demonstrate the feasibility of the concept and explore real-world issues by 
integrating the prototype into a robotic control and simulation system. 

7. Test the system for usability, performance, and using a variety of engineering and 
psychological methods. 

 
Approach 
 

The approach we have taken to achieve the technical objectives is to create a framework 
of cooperative interface agents for networked command, control, and communication.  The 
initial goal of performance-enhancing technologies for command and control should be to start 
with the current roles found in current command staffs to augment such activities and eventually 
move further, providing real-time situation awareness and decision support beyond what is 
humanly possible.  Command staffs commonly provide five basic functions to commanders in 
support of reconnaissance, security, offensive, and defensive operations (c.f., FM 17-95): 

 
�� Provide timely and accurate information. 
�� Anticipate requirements and prepare estimates. 
�� Determine courses of action and make recommendations. 
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�� Prepare plans and orders. 
�� Supervise execution of decisions. 

 
This project demonstrates the feasibility of creating a suite of interface agents that can 

provide functionality currently provided by command staffs.  The Command and Control 
Hierarchy, illustrated in Figure 2, shows how intelligent agents can provide a layer of abstraction 
between command echelons as well as between human controllers and robotic control systems. 
Special-purpose agents are encapsulated into a meta-level agent to facilitate internal agent 
communication and information sharing.  The interface agents control the flow and form of 
much of the information to be displayed to the human operator in a mixed-initiative dialog.  The 
human operator uses direct manipulation techniques to interact with the agents.  If successful, the 
human operator will not be aware of the underlying agent technology or the separation of agent 
roles. 

 
The Command and Control Hierarchy functions are divided between three classes of 

agents:  tasking, monitoring, and coordinating.  Although other configurations are possible, the 
basic roles and responsibilities required of the interface agents will remain.  In addition, it is 
assumed that interface agents will have access to, and be integrated tightly with, other battlefield 
information and decision-support systems.  Regardless of the type of digitized services that will 
become available to battlefield commanders, the need for rapid tasking, coordinating, and 
monitoring of operations will remain.  These agent classes are discussed below with examples of 
how they might be used. 

 
 
Figure 2.  CIANC3 Conceptual Overview.  
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The FCS vision of future armored and mechanized military structure includes use of 
mixed teams of human and robotic forces on a dynamic, rapidly changing battlefield.  This will 
require an overall force reduction with multiple entities controlled by individual team leaders and 
multiple teams to be lead by higher-echelon commanders.  To accomplish this, systems will have 
to be designed to require less human interaction and greater robotic autonomy.  Successful 
implementation of this shift will require autonomous and semi-autonomous robotic forces and a 
command and control infrastructure that will allow both human and robotic-teams to be 
controlled quickly and easily.  Key to this will be the degree to which teams and individual 
robots are autonomous, and whether the commander’s human-machine interface is designed so 
the commander has superior control and awareness of the situation.  The initial phase of this 
effort addressed the issue of whether an agent framework built around the three specified agent 
types (Tasking, Coordinating, Monitoring) could be constructed to add an intelligent abstraction 
layer between human military commanders and robotic battlefield entities.  The focus was to 
identify the human-interface issues, design potential solutions and create software that supports 
the commander’s tasks and mitigates human performance limitations. 

 
CIANC3 Agent Roles and Responsibilities 
 

Tasking Agents.  Tasking agents will be used to assist commanders and controllers to 
rapidly issue battlefield commands.  They are to reason about the commander’s intent, standard 
operating procedures, unit capabilities, operating environment and enemy disposition to present 
the commander with a reasonable operation plan.  Where ambiguity exists, tasking agents should 
engage the commander in dialog to clarify intentions or will present several options.  After 
customizing the resulting plan as necessary, the commander can then issue the order.  The 
tasking agent will then translate the order into the proper command sequences for next command 
layer.  These sequences range from dialog completion information to atomic-level robotic 
commands, or relatively high-level commands that will be further processed by a cooperative 
planning system. 

 
For example, a commander may wish to task a deployed company to attack a target.  To 

do this he could select the company or individual platoon elements with a light pen (or other 
suitable input device) and drag them to the designated target area using the desired path and 
direction of attack.  The tasking agent would then query the commander as to the mission type 
who in turn would select Attack.  The agent would then reason about the current posture of the 
company, assets of the platoon elements, terrain, weather, and enemy, and propose a mission 
profile.  An order would then be prepared specifying the commander’s intent; movement orders 
indicating lead and screen elements, and other information normally included in an operation 
plan.  After reviewing and verifying the plan, the commander would confirm the order; the 
tasking agent would translate the order (for robotic forces) and send out the plan.  After 
confirming receipt of the order, the system would then monitor the plan’s progress and update 
the commander as necessary. 

 
It is not enough that the system simply automate the commander’s tasks.  Users of the 

system must be aware of and feel in control of the situation at all times.  Otherwise, they will 
either lose trust in the system, reverting to manual control, or place too much faith in it, 
becoming complacent and jeopardizing lives.  After orders have been issued, the plans should be 
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visible to the commander so that they can be inspected, monitored, critiqued, and modified.  This 
mix of interface agent assistance and direct manipulation is essential to achieving the right mix 
of automated and manual control.  Examples of other roles tasking agents might play include: 

 
�� Tasking UAVs for targeting. 
�� Automatic weapon selection for known target types. 
�� Automatically modifying defensive posture in the event of an ambush. 
�� Modifying weapons usage (rate of fire, ammo selection). 
�� Modifying alert rules for when an autonomous agent should seek guidance. 
�� Facilitate any direct manipulation of by providing context-sensitive assistance such as 

assigning targeting priorities. 
 

Coordinating Agents.  Coordinating agents are responsible for facilitating communication 
and coordination across and within echelons within the command hierarchy.  While command 
hierarchies will certainly continue, operational hierarchies are likely to become more network-
centric, blurring the distinction between separate commands.  Units in one command may 
cooperate with a second command element one minute and a third the next.  Such dynamic 
operational shifts will only be possible by automating much of the communication and 
coordination that must occur in such situations.  Tasks such as determining radio frequencies, 
call signs, unit designations, chain-of-command, identify friend foe (IFF) and communications 
security are all time-consuming but necessary issues with which coordinating agents will be able 
to assist. 

 
For example, coordinating agents can increase force lethality in cooperative engagements 

by minimizing duplication of effort, maximizing target coverage, synchronizing time of attack, 
or massing fire on a single target.  They can also be responsible for maintaining a common 
operational picture (and thus, situational awareness) by updating higher and lower echelons on 
the current situation, plans, enemy intentions, and battle damage assessment.  As with tasking 
agents, it is important that agent actions, processes, and results be visible to the user.  The 
commander must be able to verify that his intentions are being accurately implemented, and he 
must be able to intercede when necessary. 

 
Another example where coordination is critical is rapidly responding to fast-moving or 

stealthy targets.  Coordinating air defenses and sensor systems faster than humanly possible is 
often necessary for effectively countering such attacks.  In such situations, the coordination agent 
might work directly with monitoring and tasking agents to rapidly eliminate the threat.  Other 
roles that might be played by coordination agents include: 

 
�� Setting up direct sensor to shooter communications across commands. 
�� Setting up other cross-command tasking such as indirect fire support. 
�� Facilitating teleconferencing. 
�� Reestablishing communications and integrating orphaned units. 
�� Communicating routes, plans, intentions, progress and other explicit and tacit 

information. 
�� Sharing incomplete sensor information (such as vectors to fire source) to higher echelons. 
�� Facilitating direct control of vehicles (e.g., tele-operation) in critical situations. 
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Monitoring Agents.  Monitoring agents are responsible for assisting the commander in 
maintaining an accurate awareness of the current situation (situational awareness) at all times.  
The amount of information available to battlefield commanders will continue to increase to the 
point of informational overload.  The main role of monitoring agents will be to prevent 
information overload by fusing, filtering, and prioritizing raw data, and transforming that data 
into information that the commander can use in the context of the current situation.  For example, 
different units may report directional vectors for the source of sniper fire.  The monitoring agent 
could use this vector data to triangulate the sniper’s position and recommend through the tasking 
agent that indirect suppressing fire be called on that location.  Another possible data fusion role 
could be more proactive.  Monitoring agents could use templates such as intelligence formats 
(e.g., SALUTE reports, which specify the Size, Activity, Location, Unit, Time, and Equipment 
of an observed enemy) to task sensors or prompt humans for missing fields. 

 
Monitoring agents should also filter information, especially when the commander is 

engaged in critical tasks, to minimize distractions.  For example, if the commander is busy 
responding to an ambush with one unit, he probably doesn’t care at the time that another unit’s 
status is “Okay” and has not changed.  Such routine status reports should be stored for future 
reference, but kept in the background so as to not interfere with more important tasks.  Likewise, 
such information can be prioritized by criticality or by relevance to current commander tasks.  
For instance, message traffic and information flow may increase dramatically during a firefight.  
Where loss of life or equipment is imminent, relevant information that might prevent or mitigate 
the situation could be made more salient for the commander (e.g., by color or ordering in a 
message list). Other monitoring agent tasks might include: 

 
�� Automatically updating and synchronizing COP (common operational picture) databases. 
�� Presenting appropriate data visually, such as unit location, direction, supply levels, and 

damage status. 
�� Providing all messages relating to a single friendly or enemy unit to help build a broader 

picture from single events. 
�� Represent visually direct communication lines between shooters and sensors. 
�� Monitoring health and stress levels of human subordinates. 

 
System Implications 
 

It is important that this interface technology be developed modularly, creating cohesive, 
loosely coupled entities that can be easily modified, adapted, and reconfigured as doctrine, 
technology, and missions evolve.  It should also be assumed that the target agent organization 
described here will change to include other classes of interface agents.  The agent architecture, 
therefore, must accommodate such change.  For example, a display agent could be used to 
control all information presented to the user.  An executive agent may be useful for coordinating 
the control and communication within a collection of agents (e.g., within the meta-agent).  Other 
agent roles that might be separately developed include: 

 
�� Deriving commanders current task from recent actions. 
�� Deriving enemy intent based on recent enemy actions. 
�� Red-teaming plans. 
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�� Routine scheduling of communications, supply, and duty rotations. 
 

In addition, the missions, roles, responsibilities and information requirements will be 
different for each echelon in which this technology is employed.  Doctrine will also change with 
coming technological advances.  It is important that the resulting system be flexible and modular 
enough to rapidly adapt to new procedures and protocols.  For example, the agent system should 
be constructed to allow different sets of expert knowledge to be easily constructed and integrated 
into the agents.  Tools for doing this should be included in later phases of the project. 

 
Usability and Training Implications 
 

To determine the proper tasks to automate, the necessary information requirements, and 
how to optimize human procedures, designers must gain a deep understanding of the user’s task.  
Task analysis (Kirwan & Ainsworth, 1992) is used to capture, understand, and improve existing 
human procedures, and how human tasks can best be improved with technology.  In addition, a 
task analysis will spell out a system’s training requirements, specify the steps and ordering of 
training materials, and provide the basis for task-based help.  Developing cognitive user models 
will assist in creating agents that help rather than hinder human performance.  Because this will 
be an evolving system, maintaining an accurate user model that evolves with the system will 
facilitate system design, interface design, and development of current training materials.  Given 
such a model, it is possible that updating portions of the training materials, such as the steps for 
completing system tasks, can be mostly automated. 

 
Understanding the commander’s interface requirements will be done using a combination 

of task analysis techniques.  Use cases will be developed to capture the overall system goals, 
who will be using it, and how we expect it to be used.  These use cases will change throughout 
the project, but a common reference point is necessary for the development team.  A Job 
Analysis will be conducted for each of the user groups (e.g., commanders, platoon leaders, 
controllers, etc.) to understand how the system will fit within the scope of their overall jobs.  A 
GOMS Analysis (Card, Moran, & Newell, 1983; Kieras, 1998) will also be conducted for the 
user tasks that will be affected by the system, such as communication procedures.  

 
The GOMS family of techniques is among the best developed engineering methods for 

modeling human performance with computer systems (John & Kieras, 1996).  The standard 
GOMS model is based on a standard information-processing model of human performance and 
the resulting models can be used to determine information requirements, functional coverage, 
execution and learning time, and overall interface consistency.  In addition, GOMS models can 
be used to make qualitative predictions about where users will make errors (Wood, 1999).  These 
GOMS analyses will clarify which portions of the user tasks can best be enhanced by the system 
and to what degree they will be improved.  In addition, GOMS models provide an excellent 
framework with which to build training materials and system documentation (Elkerton & 
Palmiter, 1991) because they specify the procedural and declarative knowledge necessary to 
perform the modeled task.  This knowledge is organized in discrete procedures and all decisions 
and any complex cognitive operations are clearly indicated. 
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Phase I System Environment 
 

The CIANC3 system integrates Soar-based interface agents into a combined simulation 
and operational environment for robotic control.  The agents communicate using the FIPA 
protocol and a user interface to the agents was created using Tcl. 
 
Integration Environment:  Operator Control Unit / OneSAF TestBed 
 

Bialczak, Nida, et al. (Science and Engineering Services, Inc., 2000) have designed and 
implemented a dynamic composable Operator Control Unit (OCU) for the Mounted Maneuver 
Battle Lab (MMBL) (now Unit of Action Maneuver Battle Lab, UAMBL) at Fort Knox, 
Kentucky.  Requirements for the OCU included that control of the unmanned vehicles had to be 
dynamic (i.e., had to transition from one OCU to another without interrupting the exercise), and 
that the OCU had to be composable – it had to control a heterogeneous set of robots.  Most of all 
the OCU had to be easy to use.  Because of its inherent flexibility, they were also able to task 
several real robotic vehicles from the OCU.   

 
Because the OCU was to play an integral role in the exercises at the MMBL, the OneSAF 

Test Bed Semi-Automated Forces (OTBSAF) simulation tool was chosen to provide a 
foundation for the OCU over actual existing control units.  This provided an interface to the 
Distributed Interactive Simulation (DIS) network used at the MMBL.  Creating different types of 
unmanned vehicles including scout robots, main battle robots, missile robots, mortar robots, 
rocket robots, mule robots, resupply robots, towing robots, mine-laying robots, counter-mine 
robots, and all sizes of Rotary Wing Aircraft (RWA) and Fixed Wing Aircraft (FWA) entities in 
the OCU was similar to creating other OTBSAF vehicles.   

 
Many unmanned vehicle control interfaces are too complex to be useful on the battlefield.  

To simplify the OCU, but still maintain flexibility, default parameters can be established at the 
start of an exercise through a pop up window.  To task a robot, the operator selects the 
appropriate task and specifies its unknown parameters.  For example, to give a Micro Air 
Vehicle (MAV) a hover command, the operator selects hover from the list of tasks for that robot, 
and clicks on the map to designate the MAVs orientation.  The altitude of the hover task is set in 
the default parameters window.  If a change is necessary, the operator can manually pop up the 
window to change the defaults.  This simple but flexible tasking mechanism allows the soldier to 
concentrate on the mission at hand instead of details on how to task the robots.  

  
A key feature of the OCU is switching control of the unmanned platforms from one OCU 

to another.  This is required because an operator may want to relinquish control of some of his 
unmanned vehicles for various reasons (perhaps a heavy fire-fight) or the OCU vehicle itself 
could be destroyed.  With two mouse clicks, the operator can send a Disconnect message to a 
robot, then with a single mouse click an operator at another OCU can send a Connect message to 
take control of that robot.  If an operator attempts to control a vehicle that is already under 
control, a warning message appears on both the OCUs.  If an unmanned vehicle has not received 
any messages from its OCU for a designated time, the robot sends an Uncontrolled message to 
the nearest OCU with communication range.  Any OCU within range can take control of the 
robot.   
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Another feature of the OCU is an adaptable fire control.  Armed robots have active and 
reactive fire control.  The active fire control is dependent on the target’s acquisition level.  A 
human’s or agent’s knowledge about a target has several levels: detected (see something, but do 
not know what it is), classify (it is tracked, wheeled, etc.), recognize (it is a tank, APC, etc.), and 
identify (it is a T80, T72, etc.).  Active fire control has all these levels plus a Fire on Order level 
to provide a man-in-the-loop option.  With the active fire control set at identify, the unmanned 
vehicle will not shoot until it knows its target is a T72, for example.  On the other hand with 
active fire control set on detect, the robot will fire at any target it sees.  Maintaining BLUFOR 
situational awareness should prevent friendly fire.  The reactive fire control is either hold fire or 
return fire if fired upon.  This fire control mechanism together with target images gives optimal 
control of the unmanned vehicle’s armament to the soldier.   

 
The OCU can receive images from smart and not-so-smart unmanned platforms.  Some 

robots have the ability to recognize possible targets.  When a target is acquired, an icon appears 
on the OCU map and an image is sent to the OCU.  These images come in three formats, small 
chip, large chip, and complete scene.  The small chip contains the least amount of information.  
It is cropped around the target, and some of the pixel data has been filtered out to reduce 
transmission bandwidth requirements.  It appears on the OCU with a prompt to request the large 
chip or not. If the operator can distinguish the target from the small chip, the operator dismisses 
the prompt– otherwise the robot sends the large chip.  This chip contains more information, less 
cropping is done, and more pixels are kept.  Again, a prompt is given for the entire scene. If this 
prompt is selected, the robot will send the original image to the OCU.  At any phase of this 
process, the operator can dismiss further images and if warranted, take action with armed 
platforms.  Some of the smaller unmanned air vehicles may not have the ability to identify 
targets.  Images from these vehicles are periodically updated on a screen next to the OCU. The 
views from up to four unmanned air vehicles can be displayed at once.  These realistic images of 
the viewpoints from the robots make the simulation more believable for the soldiers at the OCU.  

  
The OCU can also control real unmanned vehicles.  Currently, the OCU is capable of 

controlling a 350-pound electric driven wheeled robot, a 650-pound diesel powered tracked 
robot, a 50-pound electric driven wheeled robot, and a 5-pound electric powered wheeled robot.  
Several scenarios have been created with simulated and real robots from the OCU.  One 
consisted of the 50-pound robot being tasked from the OCU to recon a built up area in the 
simulation.  As the real robot moved across a parking lot, its icon on the OCU responded to its 
movements around the town.  A MAV was tasked to track the robot and an IG provided realistic 
imagery from the unmanned air vehicle.   

 
In summary, the OCU mixes the simulation functionality of OTB and the control 

capability of a robotic control system.  This combination makes the OCU uniquely qualified as a 
platform on which to further develop the CIANC3 system. 
 
Agent Environment:  The Soar Cognitive Architecture 
 

The Soar cognitive architecture is a powerful framework for creating multi-agent 
systems.  Soar has been used successfully to simulate complex human behaviors, the most 
extensive of which is Tac-Air-Soar (Jones, et al., 1999).  The interfaces we have developed for 
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TacAir-Soar allow one or two operators to control more than 50 autonomous agents during 
training exercises. 

 
Soar is a common software architecture that has been used to model a wide range of 

complex psychological behaviors (Rosenbloom, Laird, & Newell, 1993).  It was originally used 
to develop psychological models and intelligent systems that require specific problem-solving 
methods from many different domains.  The Soar architecture has since evolved to include 
representations and methods for problem solving, planning, learning, and interacting in complex, 
dynamic environments.  Many of the design requirements that contributed to Soar were derived 
from Newell and Simon's work on modeling human problem solving (Newell & Simon, 1972).  
Based on initial successes in modeling human behavior, Newell proposed Soar as a candidate 
“Unified Theory of Cognition” (Newell, 1990). 

 
All Soar models share the same memory structure, task decomposition, task processing, 

and learning structure.  Different systems developed within Soar have successfully modeled a 
wide variety of human behavior relevant to this research. 

 
A key component of all Soar models is that all activity is cast as a succession of decisions 

as to what to do next.  The decisions are based on an internal representation of the current 
situation, which is based upon realistic simulated sensors (such as simulated radar, visual, IFF, 
RWR, FLIR, TVS, etc.). 

 
Soar has been successfully used to model complex battlefield engagements in field 

simulations.  Soar was used to create synthetic agents for FWA, RWA, and related controllers.  
For example, we have created Soar models of fighters and strikers that interact with Soar forward 
air controllers during close-air support simulations.  Similarly, for defensive-counter air (DCA) 
missions, Soar-based fighters coordinate with a Soar-based Airborne Early Warning (AEW) 
agent (currently in a simulated E-2C) that provides broadcast and close control support to 
fighters.  In all cases, human operators can also provide command and control to Soar agents.  
This intervention is allowed but not required.  Recent work has developed a model of ground 
forces (Taylor, Koss, & Nielsen, 2001).  The current project uses Soar to develop Intelligent 
User Interface agents, leveraging Soar to support a rich and reactive human-like task 
decomposition, but without being limited by human performance constraints. 
 
Agent Communications:  FIPA 
 

Robotic forces must be able to communicate with each other in order to conduct joint 
operations.  An agent communication language (ACL) provides a common way for agents to 
communicate.  An effective ACL must enable interface agents to communicate between multiple 
echelon hierarchies of both robotic and human forces.  The Foundation for Intelligent Physical 
Agents (FIPA) (Huhns & Singh, 1997) has defined an agent communication language that will 
enable robotic forces to perform these types of communication.  The FIPA standard also offers 
several additional benefits.  The FIPA ACL provides a formal semantics that allows interface 
agents to deal with actions explicitly.  This will enable robotic forces to make decisions, 
maintain situation awareness, and share information more efficiently.  By using a FIPA-based 
ACL, robotic forces will be able to execute commands rapidly, and describe their actions 
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precisely.  Robotic forces will also be able to share awareness information about their current 
situation, status, plans, and experiences.  This will allow groups of robotic forces to coordinate 
activity.  The FIPA ACL also provides explicit support for secure communication.  This will 
make it more difficult for enemy forces to compromise robotic force communications.  
 
User Interface Development:  Tcl 
 

Tcl is a leading scripting language supporting robust and rapid GUI development that can 
easily be modified and ported across platforms.  Tcl was selected for the Phase I interface 
prototype due to its high quality and low integration cost.  Interface prototypes are necessary for 
both testing our design assumptions with real users (or other subject matter experts), and for 
stress-testing the underlying technologies during system development.  Soar Technology has 
successfully created similar interfaces for controlling simulated semi-autonomous agents for 
flight training within the TacAir-Soar system (Jones, et al., 1999).  The resulting interfaces 
allowed the migration from a system that required one human for every five vehicles to a system 
where one to two people can control an entire exercise (forty or more vehicles).  Similar to the 
needs of the current project, the TacAir-Soar system required planning and control components 
for air tasking orders, team assignments, and individual entity assignments. 

 
Phase I Activities and Accomplishments 

 
Under Phase I of this Small Business Innovative Research contract, we researched 

methods for effectively controlling FCS units containing mixed human and robotic elements.  
Our objective was to determine whether an agent framework built around three specified agent 
types (Tasking, Coordinating, and Monitoring) could be constructed to add an intelligent 
abstraction layer between human commanders and battlefield elements.  The focus was to 
identify human-system interaction issues, design potential solutions, and create software that 
supports the commander’s tasks and mitigates inherent human performance limitations. 

 
During the initial phase of this project we progressed in several areas.  Major 

accomplishments of Phase I included: 
 
�� A working scenario was defined on which to determine project feasibility. 
�� Architectural tradeoffs were discussed culminating in a working system and 

communication architecture. 
�� Necessary inter-agent communications protocols to perform the scenario were 

designed. 
�� Soar was integrated into the Operator Control Unit (OCU)/OneSAF TestBed (OTB) 

code-base. 
�� A Soar-language prototype multi-agent C3I support system was developed and tested. 
�� A prototype user interface for the multi-agent system was designed and implemented. 
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Conceptual FCS Vignette 
 

We chose a simple scenario of a UAV acquiring a target for an unmanned shooter.  This 
scenario was then split into several stages and the responsibilities for individual entities were 
identified.  This scenario is illustrated in Figure 3. 

 
1. Commander wants to attack enemy unit with non-line-of-sight (NLOS) weapon. 
2. Commander selects unit and drags a path to the enemy unit. 
3. Tasking agent interprets the gesture as an attack, completes 80% of an operation order 

and queries the commander for the rest of the details. 
4. Commander confirms the op order and tasking agent translates the order into a set of 

smaller movement orders. 
5. Tasking agent spawns a Monitoring agent that gets unit status every 5 minutes (or after 

anomalous event) and updates commander's screen. 
6. Monitoring agent informs commander that unit is ready to fire. 
7. Commander approves, unit fires, sensor unit informs coordinating agent that enemy is 

destroyed. 
 
 

 
 

Figure 3.  Phase I Scenario Narrative Map. 
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Phase I Scenario 
 
A scenario was created from the FCS vignette that: 
 

�� Would exercise each of the candidate agent types,  
�� Was simple enough to implement within the scope of the project, and 
�� Was sufficiently complex so as to adequately explore the feasibility of the approach.  
 

Briefly, the scenario involves an FCS commander targeting an enemy unit with a non-
line-of-sight (NLOS) unmanned ground vehicle (UGV).  The tasking agent finds an available 
unmanned aerial vehicle (UAV) capable of providing targeting information to the UGV at the 
designated attack time.  The UGV moves into position and notifies the UAV that it is ready to 
fire.  At this time the UAV paints (lases) the target, allowing the UGV to fire.  Table 1 shows the 
discrete phases in this scenario and describes the responsibilities of each of the involved entities. 

 
Table 1 
Scenario phases and entity responsibilities 

Event/Agent Task Monitor Coord Entity/Robot 
FIPA Init Register DF/AMS Register DF/AMS Register DF/AMS Register DF/AMS 

FIPA Connect Search DF for "local" 
Mon/Coord 

Search DF for "local" 
Task/Coord 

Search DF for "local" 
Task/Mon 

 

Commander Needs 
Attack (1) 

    

Commander Designates 
Attack (2) 

    

Attack Order 
Interpretation (3) 

Interpret Order: auto-fills 
slots, queries for Cmdr for 
details, queries Coord for 

immediately accessible 
details 

Fills in whatever details 
it knows about at this 

time from COP 

  

Determine Resources (3) Find required entity 
resources from Coord 

agent 

 Seeks entity resources: 
Search DF for agents 

e.g. w/ required sensors 
that can be in required 

area at required time 
with necessary 

munitions, etc. and 
reply to Task agent 

 

Confirm Order (4, 6) Translate order into 
primitive behaviors 

   

 Tasks UAV   Committed 
 Tasks NLOS   Committed 
 Tells Monitor to watch for 

task-specific conditions 
Sends out commands to 

sensor entities and to 
Coord agents to send it 

info and under what 
conditions 

Receive monitoring 
tasks and searches and 
dispatches requests to 

appropriate other 
commander/TCMs (with 

replies directly back to 
Monitor) 

Receives 
monitoring tasks 
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Monitor Execution (5)  Receives periodic 
status, passes on to 

Task, and informs and 
presents current 

operational picture to 
Cmdr 

 Sends periodic 
status 

  Receives events, 
passes on to Task, and 

informs and presents 
current operational 

picture to Cmdr 

 Reports events 

Prepared To Fire (7)  Receives ready to fire  NLOS: Reports 
ready to fire 

  Receives marking target  UAV: Reports 
marking target 

FIRE! (8)   Tells entity to pull 
trigger 

NLOS FIRES 

Target Destroyed (8)  Receives kill report  UAV reports kill 
  Informs Cmdr and Task 

agent of success 
  

 
List of Scenario Phases 

    

(1) Commander wants to attack enemy unit with non-line-of-sight (NLOS) weapon.  
(2) Commander selects unit and drags a path to the enemy unit.  
(3) Tasking agent interprets the gesture as an attack, completes 80% of an operation order and queries the 
commander for the rest of the details. 

 

(4) Commander confirms the op order and tasking agent translates the order into a set of smaller movement 
orders. 

 

(5) Monitoring agent gets unit status every 5 minutes (or on anomalous event) and updates commander's 
screen. 

 

(6) Tasking agent knows that unit will require targeting info when it gets into range, so it contacts the 
Coordinating agent which requests services of a sensor unit at time T. (OBE) 

 

(7) Monitoring agent informs commander that unit is ready to fire.  
(8) Commander approves, unit fires, sensor unit informs coordinating agent that enemy is destroyed.  
 
System and Communication Architecture 
 

Several system design architectures were examined to determine tradeoffs.  It was 
decided that the most flexible and extensible architecture would be beyond the scope of this 
phase of the project.  This architecture would entail discrete system components and a dedicated 
communications infrastructure.  It was determined that this portion of the design was merely a 
matter of engineering and did not affect the feasibility questions being addressed.  Instead, a 
simpler architecture was proposed similar to Soar Technology’s prior work with JSAF, whereby 
the Soar kernel is compiled with the OCU/OTB code-base.  This simplifies the inter-agent 
communications infrastructure and allows more time to be spent on agent design issues.  The 
following sections discuss these tradeoffs in more detail.  Four options were considered and 
Option III was selected for Phase I implementation.  This architecture will be reevaluated for 
Phase II.  All four options are presented below. 
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Figure 4.  Phase I Design Option I. 

 
Option 1 (Figure 4) would have had the advantage of being able to apply the type of 

complex pro- and re-active cognitive modeling of Soar architecture agents to every entity in the 
OCU.  The disadvantage would be that much of the ability for the Tasking, Coordinating, and 
Monitoring agents to engage in “plug and play” composability with low-fidelity agents would be 
removed by virtue of having to implement a Soar agent wrapper around every new low-fidelity 
entity. 
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Figure 5.  Phase I Design Option II . 
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Option II (Figure 5) was essentially a modification of Option I which was discussed that 
would add another layer of coordination between the C3 agents and collections of entities 
grouped as “Teams.”  Each team would have a Team Agent essentially acting as the NCO and 
mediating between the entities and the C3 agents (Tasking, Coordinating, Monitoring).  
Although this option suffered from the same disadvantages as the first, the Team Agent was an 
interesting addition. 
 

 

Figure 6.  Phase I Design Option III. 
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• Smallest number of Soar 
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composability with 
entity agents 
(taskframes)

• Cons
• Need to build an 

additional FIPA-OCU 
interface component

 
Option III (Figure 6) required the development of an interface between OCU entities and 

the FIPA messaging layer in addition to the required interface between Soar agents and the FIPA 
messaging layer, the preservation of relatively easy composability with arbitrary entity types was 
deemed more than sufficient to outweigh that additional development cost.  For that reason, this 
option was deemed the best choice for the Phase I implementation. 
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Figure 7.  Phase I Design Option IV. 

 
Option IV (Figure 7), much like Option II, was essentially a modification of Option III 

that would add another layer of coordination between the C3 agents and collections of entities 
grouped as “Teams.”  Each “Team” would have a Team Agent essentially acting as the NCO and 
mediating between the entities and the C3 agents (Tasking, Coordinating, Monitoring).  
Although this option offered potential merit above and beyond the design of Option III, the 
relative advantages did not seem as though they could be cost-effectively presented in the Phase 
I implementation. 
 
Inter-Agent Communications for the Scenario 
 

The inter-agent communications necessary to perform the scenario were diagramed fully 
to more clearly delineate the roles and responsibilities of all the scenario entities.  Figure 8 
provides a sample portion of the communications diagram developed to illustrate the basic flow 
of communications among scenario entities.  This figure's intent is to provide the reader a 
pictorial representation of the output format from the analysis.  Output content for this sample 
can be found in Appendix B. 
 

The inter-agent communications necessary to perform the scenario were diagramed fully 
to more clearly delineate the roles and responsibilities of all of the scenario entities.  This was 
translated into the UML (Unified Modeling Language) sequence diagram shown in Figure 8 and 
presented in full in Appedix B.  This form of diagram formalizes the timing and sequence of 
events necessary for the agents to cooperate for the completion of the scenario task. 
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Figure 8.  Inter-agent communication partial diagram (See Appendix B for complete diagram) 

 
Soar-OCU/OTB Integration 
 

The Soar cognitive architecture has been successfully integrated with the OCU/OTB 
code-base and Soar agents are currently able to see the status of OCU entities and send 
commands to those entities.  While there were minor technical difficulties during the integration 
process, the system is currently quite stable and should provide a good platform for future work.  
Considering that the OCU/OTB codebase is essentially itself a prototype, the integration went 
quite well.  With this portion of the project complete the stage was set to allow the interface 
agents to send commands to and receive messages from the OCU entities. 
 
Soar Prototype Agent 
 

A Soar prototype agent was created to test the feasibility of the Soar agent to OCU entity 
communication design and the overall system design.  The complete functional path of the 
system; task specification by the user through the user interface, task interpretation and 
elaboration by the agent, and task performance by the OCU entities was tested successfully using 
the scenario described earlier. 

 
User Interface Prototype 
 

A prototype user interface for the multi-agent system was designed and is shown in 
Figures 9 and 10.  The interface consists of a multi-tabbed pane that contains controls for 
initiating, monitoring and reviewing the progress of the scenario task described earlier.  This 
interface is intended for initial testing purposes only and is not meant to represent a final user 
interface design.  Its main purpose is to allow rapid prototyping and testing of user interface 
concepts associated with initiating, monitoring and reviewing the progress of the task.  This 
interface is used in conjunction with the main OTB/OCU interface, which already provides the 
ability to override low-level commands, and provides a good picture of the current situational 
awareness of the OCU entities.  
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Figure 9.  The Task Definition Pane of the user interface prototype. 

 
Figure 9 displays the Task Definition pane of the prototype user interface.  The top of this 

pane contains fields for naming the task and selecting the task type.  Currently the straw man 
task is the only valid task type.  The task naming fields will be used for task management 
purposes in future tests involving multiple concurrent tasks.  The central portion of this pane 
contains the plan specification fields that must be filled for the mission along with available 
optional parameters that may be specified by the user if desired.  The “Generate Plan” buttons 
allows the user to submit the plan request to the tasking agent.  The plan created by the tasking 
agent is then displayed along side the plan specification fields to allow the user to easily compare 
the generated plan parameters with the requested plan parameters.  Future versions of this 
interface will also provide the user with explanations for any differences between the generated 
and initially requested plans.  These tasking plans extend the current capacity of the integrated 
CIANC3-OCU system by providing the warfighter a limited degree of mission planning. Future 
versions will extend the scope of mission planning available 
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Figure 10.  The Task Monitoring Pane of the user interface prototype. 

The Task Monitoring Pane is shown in Figure 10.  This pane is intended to provide the 
user with a simple and easy to understand interface for determining the current status of the task.  
It also provides facilities for the user to respond to queries from the agents (permission to fire, 
etc.).  The overall task status is displayed with an indicator that is visible no matter what pane is 
currently being displayed in the user interface.  This status indicator is located in the upper left 
hand corner of the interface and uses colors and flashing to provide the user with status 
information.  
  
CIANC Agent Behavior in the NLOS Bombardment Mission 
 

In Phase I we built a demonstration prototype of the CIANC system to perform the 
scenario described earlier.  This section details the behaviors and communications within the 
system as it is performing the scenario. 

 
When an agent is started, it is initialized with an agent type (Tasking, Monitoring, 

Coordinating) that determines how it will apply its knowledge to the environment.  A Tasking 
agent will immediately request direction from the operator and wait for a response, while a 
Monitoring agent will examine the environment to determine and report what the Common 
Relevant Operational Picture (CROP) is. 

 

 
 25



 

When the Tasking Agent has been communicated a mission definition by the operator, it 
will request CROP details from the monitoring agent, including a report of available FCS vehicle 
resources.  From that list of available resources, the Tasking Agent will attempt to compose a 
mission operational plan based on the requirements of the mission and the preferences of the 
operator.  Once the Tasking Agent has determined whether or not it is possible to compose a 
functional mission plan, it will report to the operator.  If sufficient information and resources 
were available for the Tasking Agent to compose an operational plan, it will present the plan for 
acceptance to the operator, otherwise, the Tasking Agent will indicate the deficient information 
and/or resources to the operator. 

 
If the operator communicates to the Tasking Agent that it can start the plan, the Tasking 

Agent will direct its selected Spotter entity to begin proceeding to the defined contact area.  The 
Monitoring Agent will continue monitoring the status of selected entities and the environment, 
reporting relevant changes to the Tasking and Coordinating Agents.  The Coordinating Agent 
will report to the Tasking Agent when mission-specific milestone synchronization events have 
occurred, allowing the Tasking agent to further direct selected entities and report to or request 
feedback from the operator. 

 
When the Monitoring Agent reports to the Coordinating Agent that the selected Spotter 

entity has detected targets according to the defined Rules of Engagement (ROE), the Tasking 
Agent will direct the Spotter entity to halt and continue observation of the targets.  The 
Coordinating Agent, based on CROP reports from the Monitoring Agent, will then inform the 
Tasking Agent that a mission milestone, the Spotter entity in position observing the targets, has 
been achieved.  If any CROP reports from the Monitoring Agent indicate that the pre-requisites 
for that mission milestone are no longer met, such as the Monitoring Agent reporting that the 
Spotter entity has lost sight of the targets, the Coordinating Agent will inform the Tasking Agent 
of the change in mission milestone status.  In the example of the Spotter entity losing sight of the 
targets, the Tasking Agent will then direct the Spotter entity to re-acquire visual contact with the 
targets. 

 
As long as the Tasking Agent believes that the Spotter entity is in position and is 

observing the targets, if the Monitoring Agent indicates that the Shooter entity is beyond indirect 
fire weapon range of the targets, the Tasking Agent will command the Shooter entity to advance 
towards the contact area until within indirect fire range of the targets. 

 
Once the Monitoring Agent reports that the Shooter entity is within indirect fire range of 

the targets and the Coordination Agent has not informed the Tasking Agent of any change in 
milestone status, the Tasking Agent will direct the Shooter entity to halt in preparation for fire.  
The Coordinating Agent, based on CROP reports from the Monitoring Agent, will then inform 
the Tasking Agent that another mission milestone, a combination of the Shooter entity in firing 
position and the continuing Spotter entity observation milestone, has been achieved. 

 
The Tasking Agent will recognize these as the pre-requisites of the target designation 

portion of the NLOS Bombardment mission and will request authorization from the operator to 
begin actively designating the targets.  The Tasking agent will wait until the operator replies with 
an acceptance message or the situation otherwise changes.  When the Tasking Agent receives 
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operator authorization to designate the targets, it will direct the Spotter entity to begin target 
designation.  The Coordinating Agent, based on CROP reports from the Monitoring Agent, will 
then inform the Tasking Agent that another mission milestone, both selected entities in position 
and the Spotter entity designating the targets, has been achieved. 

 
With the Coordinating Agent reporting the existence of the pre-requisites for the indirect 

fire portion of the NLOS Bombardment mission, the Tasking Agent will request authorization 
from the operator to begin firing upon the target position.  The Tasking agent will wait until the 
operator replies with an acceptance message or the situation otherwise changes.  When the 
Tasking Agent receives operator authorization to fire upon the targets, it will direct the Shooter 
entity to begin bombardment of the target location as reported to the Monitoring Agent by the 
Spotter entity. 

 
The Monitoring Agent will continue to report the status of the targets as observed by the 

Spotter entity.  As long as the Tasking Agent believes that it has fire authorization from the 
operator, that the Spotter entity is observing the targets, that the Shooter entity has remaining 
ammunition, and the targets are not destroyed, it will direct the Shooter entity to fire short 
barrages. 

 
Once the Monitoring Agent reports to the Coordinating Agent that the Spotter entity has 

observed the destruction of the targets, the Coordinating Agent will indicate to the Tasking 
Agent that the final mission milestone has been achieved.  When the final mission milestone is 
achieved, the Tasking Agent will report this to the operator, who is then free to re-task the agents 
and/or the individual entities. 

 
Summary of Phase I Results 
 

The agent and communication system designs were successfully implemented in a 
simulation environment.  A scenario was created to test the system using a simple combination 
of a sensor-vehicle (UAV) and a shooter-vehicle (UGV).  The UGV took the tasking to seek and 
destroy a suspected enemy.  The UGV tasked a UAV to locate and acquire the target.  The UAV 
located the target and transmitted the coordinates to the UGV, which then confirmed with the 
human operator before firing on, and destroying the target. 

 
The scenario was simple enough to test and demonstrate the capabilities of the interface-

agent architecture, but it was not complex enough to demonstrate any real utility to robotic 
controllers.  In addition, the Tasking agent accomplished most of the background work.  A more 
complex scenario would place more demands on the Coordinating and Monitoring agents, 
driving their further elaboration. 

 
The UML sequence diagram demonstrates how complex the agent communication 

protocols need to be in order to perform even the simple scenario.  Implementing a more 
complex scenario will determine whether the sequence diagram is enough to simplify that 
portion of the development or whether additional tools will be required. 
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The performance of the Soar cognitive architecture was more than adequate for the agent 
task in the simple scenario.  However, implementing the agent behaviors was somewhat 
complex, even with Soar.  More research effort needs to be spent (outside of this project) 
developing tools and techniques for rapid agent development.  Research conducted in the next 
phase of this project should help to better define the requirements for such tools.  Related to this 
is the large amount of declarative knowledge that needs to be encoded into the Soar agent 
procedures.  Representing such knowledge within production rules will inhibit scaling because 
changes to that knowledge will necessitate time-consuming and expensive work.  We should 
explore an ontological approach to representing such knowledge to disentangle the behavioral 
knowledge from the declarative knowledge. 

 
Although FIPA provided a great foundation for developing the agent communication 

infrastructure, it is not clear that it will meet the needs of military systems.  For Phase II we will 
consider using DARPA’s CoABS grid for the agent communication architecture. 

 
In summary, Phase I successfully demonstrated the technical feasibility of interface 

agents for robotic command and control.  It also provided the necessary infrastructure and 
techniques necessary to rapidly explore much more of the problem space. 
 

Phase II 
 

Phase II System Design 
 

The purpose of this section is to provide a high level overview of the design of the 
software infrastructure that will be built for Phase II of the CIANC3 project. 
 
Infrastructure Design 
 

  The Phase I CIANC3 infrastructure is built upon the Multi-functional Operator Control 
Unit (OCU) software provided by Science and Engineering Services, Inc (which is in turn based 
on OneSAF Testbed Baseline Version 1.0 (OTB).  The OCU software was chosen as a basis for 
this project (over OTB) mainly because it already provides the necessary simulated robotic 
entities for the Soar meta-agents to manipulate.  Use of the OCU software will continue in Phase 
II. 

 
Design Concept 
 

The software infrastructure for the CIANC3 project can be broken down into three main 
components:  the Soar kernel, responsible for creating and managing the Soar meta-agents; the 
OCU, responsible for creating and managing the OCU entities; and the Message Manager, which 
is responsible for the messaging infrastructure between the various agents in the system.  The 
interactions between the Soar kernel, the OCU/OTB and the Message Manager will essentially 
be limited to FIPA-ACL type messages except for a few interactions during process initialization 
and agent directory querying.  
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The Message Manager will act mainly as a message queue and a directory service for 
facilitating communications between the various agents.  The specifics of the message content 
are described in another document.  Here it is enough to say that these messages are the only 
method by which information is passed between the components of the system.  This approach 
should help reduce unnecessary coupling between the various components while still providing 
rich interactions between the various agents. 
 
The Messaging Infrastructure 
 

The Message Manager as implemented during the Phase I of the CIANC project was a 
prototype closely tied to the implementation domain of the Phase I vignette. During Phase II, it is 
our intention to enhance the Message Manager component of the software infrastructure to be 
both general purpose and extensible.  By enhancing the messaging capability to be both general 
purpose and extensible, the process of adding new messages in the future and tying them to 
existing agent behaviors could be done without requiring a behavior developer.  This 
parameterized approach significantly extends the composability of any behaviors created for the 
tasking, coordinating and monitoring agents.  Enhancement of the Message Manager component 
of the software infrastructure will be obtained by standardizing the messaging software interface 
between all agents and entities within the OCU and using an Agent Communication Language 
(ACL) like the COABS Grid or FIPA. 

 
Adoption of COABS formalisms for the composition of messages will allow us to encode 

general message handling and message composition knowledge within the agents.  Specific 
message instances and their contents can then be parametrically associated with behaviors or sets 
of behaviors, enabling the possibility of behavior composition by non-behavior developers. 

 
Figure 11 shows in detail the execution sequence for a single messaging cycle.  In a 

single messaging cycle, the agent simply retrieves messages from his message queue using the 
Retrieve Messages call and sends them using the Send Message call.  The OTB scheduler calls 
both the agents’ and OCU entities’ messaging loops indirectly through their main loop cycles.  
The Soar agent’s main loop in turn calls the input and output phase callbacks, which are directly 
responsible for handling the message sending and retrieving. 
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Figure 11.  Messaging sequence diagram. 

 
A higher-level view of the messaging infrastructure, which concentrates on the 

messaging necessary to maintain the agent database, is shown in Figure 12.  Here the agents 
register with the Message Manager/Directory database on creation and then provided periodic 
status and capability updates to maintain the database information.  A time stamp detailing the 
time of the last update will be provided as part of any database query result.  This should allow 
the agents to gracefully handle situations where other agents or entities have been destroyed or 
disconnected.   
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Figure 12.  Agent registration and status messaging. 

 
Multi-Agent Design 
 

Following are design requirements for each of the agent types, where each listed item 
describes a single feature/requirement.  Some listed features will require interaction with other 
agents; these are shown in brackets. 

 
Tasking Agent (TA).  Task agents assist commanders and controllers to rapidly issue 

battlefield commands. 
 

�� Present commander with reasonable operation plan. 
�� Engage commander in clarification dialog. 
�� Present options to commander. 
�� Translate order into proper command sequences for next command layer. 
�� Autonomously gather information to support Op Order completion [Coordination, 

Monitoring]. 
�� Dispatch and execute Op Order [Coordination, Monitoring]. 
�� Task UAVs [Coordination, Monitoring]. 
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�� Autonomously gather information to maintain situational awareness [Coordination, 
Monitoring]. 

�� Autonomously modify tasking [Coordination, Monitoring]. 
 

Coordinating Agent (CA).  Coordinating agents are responsible for facilitating 
communication and coordination across and within echelons within the command hierarchy. 
 

�� Develop and maintain representation of available and currently interacting command 
elements [Monitoring]. 

�� Determine low-level communication attributes such as radio frequency, call signs, unit 
designations, chain-of-command, IFF and communications security [Monitoring]. 

�� Develop and maintain representation of common operational picture with regard to 
current situation, plans, enemy intentions, and BDA. [Monitoring]. 

�� Coordinate with higher, lower, and nearby peer command elements to react quickly to 
changing situations, reduce duplication of effort, maximize target coverage, synchronize 
attacks, and massing fire [Monitoring]. 

�� Present current operational picture to commander (OBE). 
�� Set up direct sensor to shoot communications across commands. 
�� Set up indirect fire cross-command communications. 
�� Facilitate teleconferencing. 
�� Reestablish broken communications [Tasking, Monitoring]. 
�� Integrate orphaned units [Monitoring]. 
�� Share incomplete sensor information to upper echelons. 
�� Decompose and disseminate Op Orders to lower echelons. 

  
Monitoring Agent (MA).  Monitoring agents are responsible for assisting the commander 

in maintaining an accurate awareness of the current situation at all times. 
 

�� Assist commander in maintaining accurate awareness of the current situation 
[Coordinating]. 

�� Fuse, filter, and prioritize raw data. 
�� Transform data into contextually relevant information [Tasking]. 
�� Autonomously gather information to maintain common operating picture [Tasking, 

Coordinating]. 
�� Present current/common operational picture to commander. 
�� Collect and present all messages related to a particular unit to help build a broader picture 

from single events [Coordinating]. 
�� Represent visually direct communication lines between shooters and sensors [Tasking]. 
�� Monitoring health and stress levels of human subordinates. 
 

Phase II Work Plan 
 

This project will address the robotic command-and-control needs by developing a 
framework and toolkit for constructing intelligent user interface elements to enhance 
commander-team control and interaction.  These user interface elements will allow battlefield 
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commanders to efficiently control autonomous teams of robotic or human elements by 
anticipating commander intent and reducing substantially the amount of information the 
commander must specify to communicate that intent.  It will also support the integration of other 
intelligent and autonomous decision-support tools and information systems without increasing 
the commander’s overall mental workload. 

 
There are three main research & development areas in the Phase II workplan; human-

system interaction, agent & architecture research, and system development.  The toolkit will 
consist of extensible software agents for tasking, monitoring, and coordination, driven by a 
direct-manipulation user-interface.  An initial task analysis of the command and control problem 
will be used to identify the critical cognitive workload factors.  This will motivate the assignment 
of appropriate human control functions to software agents and will help determine the 
requirements for the human interface.  A suite of software agents will be developed using the 
Soar cognitive architecture.  These agents will communicate using the Foundation for Intelligent 
Physical Agents (FIPA) communication protocol and will be controlled using a JAVA -based, 
direct-manipulation interface.  The initial system will be integrated into the OCU-enhanced OTB 
battlefield simulation system created by TSA and tested with a representative FCS-company 
scale ground-force task.  The following sections describe the tasks that will be accomplished in 
Phase II. 
 
Research HSI, Scenarios, Behaviors 
 

A variety of methods will be used for assessing the knowledge, skills, and abilities 
required by a commander to use the system successfully, including observation of commander 
performance during an FCS C2 exercise and hierarchical task modeling of CIANC3 and OCU 
usage.  In addition, we will work with subject matter experts to help develop realistic scenarios 
and to better understand the challenges that will be faced by future FCS commanders. 
 
Develop GUI 
 

Based on the results gathered from the HSI research, an easy-to-use GUI will be designed 
and built to facilitate communication and interaction between human and software agents in the 
system.  The Phase II GUI will be based on the GUI prototype developed for Phase I but will be 
more tightly integrated with the OCU, including using highlighting active entity locations, and 
using the OCU map as a sketchpad to sketch rough plans.  In addition, the Phase I prototype 
focused on single missions.  The Phase II GUI will be extended to support multiple concurrent 
missions.  While the Phase I GUI prototype was implemented in TCL, the Phase II interface will 
be developed in JAVA.  

 
JAVA supports robust, object oriented GUI development and is the native language of 

the CoABS Grid.  User interface elements were created with JAVA using tools and techniques 
previously developed at Soar Technology.  For example, the Communications Panel (Jones, 
1998) is a human interface element for communicating with Soar agents operating in the JSAF 
(Joint Semi-Automated Forces) environment.  Similarly, the Situation Awareness Panel (SAP) 
(Jones, 1999) also communicates with JSAF, allowing users to inspect the reasoning process of 
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autonomous pilot agents.  The information from the SAP is used to aid observation, use and 
development of TacAir-Soar intelligent agents. 
 
Design and Conduct System and Human Tests 
 

To determine the efficacy of the approach, it is imperative that the system be tested.  
These tests could take the form of small-scale individual usability tests at UAMBL or ARI, 
actual use of the prototype at UAMBL, or a full-scale comparison of company-level training 
pitting a CIANC3 enhanced FCS-company against a conventional company.  In any case, this 
phase of the project will be dedicated to the testing design and performance testing of the overall 
system. 
 
Develop Testing Environment 
 

We will develop techniques for instrumenting the OCU environment to capture accurate 
millisecond-level human-subject data.  This will be used to help evaluate overall system usability 
and the CIANC3 system’s effect on operator performance, cognitive workload, propensity for 
error, and affect. 
 

 

Figure 13.  Experimental Environment. 
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Research Agent Architecture and Communications 
 

We will be developing flexible, declarative analytic interaction models supporting 
semantically rich analysis processes and human interactions.  Interactions will be analyzed for 
commander’s intent and a semantically rich interaction protocol representation optimized to the 
operational processes will be designed.  The result will be a novel approach that tightly integrates 
message semantics to agent communicative acts and conversation protocols. 
 
Develop Agent Architecture and Communications 
 

Multi-agent organization and deontics research – Analyze organizational features of the 
system with respect to traditional military roles and more flexible, dynamic, and transient agent 
teams and adopt/develop appropriate representation and reasoning paradigm.  Deontic aspects of 
obligations, authority, permissions, restrictions, etc. will need to be considered when performing 
tasks in view of the current and expected organizational structure as well as when planning 
outgoing communications and responding to incoming messages. 
 
System Development and Integration 
 

Although a minimal software interface was developed for Phase I to integrate the multi-
agent system into OCU/OTB, further development will more seamlessly integrate the 
functionality of the OCU and the CIANC3 prototype allowing for higher fidelity and more 
realistic experimentation. 
 
Develop Agent Behaviors 
 

Develop representations and an introspection scheme by which agents can determine an 
autonomy level appropriate to the current tasks and situation.  Agents would adjust how 
proactive or passive they are with respect to goals from human operators and other agents and 
how independent they are with respect to other modalities such as beliefs and capabilities.  
Deontic, organizational, and communication aspects all will potentially impact upon an agent's 
autonomy level. 
 

Phase III Transitional Plan 
 

This work will provide a technical and theoretical framework with which to further 
explore interface agents for a variety of command and control tasks.  It will demonstrate the 
power of reasoning systems for user interface development and it will represent the state of the 
art in interface agent technology. 
 

Phase III Commercialization Strategy 
 

Soar Technology, Inc.’s mission is to create and apply cognitive, knowledge-rich, 
dynamic systems to fundamentally improve how people work and live.  Using multiple artificial 
intelligence (AI) disciplines, our expertise is in R&D for intelligent autonomous agents, control 
interfaces, information visualization, advanced human behavior and error-modeling technology. 
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Our core team developed TacAirSoar, the largest and highest fidelity expert system deployed in 
military simulation, with a suite of agent and exercise management tools.  With one of the 
strongest concentrations of expertise and experience in the field of military AI, we are at the high 
end of human behavior representation for military simulation.  We are now using the expertise 
and insights gained in simulation and multi-agent interaction to move into new domains of 
knowledge management, decision-making and control.  The work being undertaken under Phase 
I, and proposed for Phase II, leverages past, current and prospective work, as our technology 
evolves.   

 
Though less than five years old, Soar Technology has successfully grown its R&D 

engineering and consulting revenue at an average rate of 100% per year, commercializing its 
artificial intelligence and human-computer interaction expertise through contracts for DARPA, 
Army, Navy, JFCOM, ONR, AFRL, ARI and the intelligence community, and with Lockheed 
Martin, Raytheon, L-3 Comm, Veridian, IITRI, IDA, MSIAC, and others.  

 
If successful, the technical and theoretical accomplishments produced by this CIANC3 

project could be essential for successfully implementing the Army’s FCS force transformation 
vision because they would enable the multiplier effects necessary for optimal control of robotic 
teams.  In terms of immediate markets, FCS command and control programs will thus be the 
primary commercial opportunities.  During Phase II, discussions will be initiated with the 
objective of integrating this technology into FCS candidate systems under licensing agreements. 
In addition, through other potential work with DARPA (for example, the Unmanned Combat 
Armed Rotorcraft (UCAR) program, or the Mixed Initiative Control of Automa-Teams (MICA) 
research program), the Army and STRICOM, we can leverage and integrate the technology 
developed in Phase II for the C2 requirements of FCS.  In addition to the FCS, many other future 
unmanned systems will require similar command and control capability. With Congress’ goal 
that within 10 years, one-third of DOD’s deep-strike aircraft will be UAV systems, and within 15 
years, one-third of all ground combat vehicles will be unmanned, significant acquisition 
programs will be underway.  Soar Technology is monitoring the participants in this market 
sector, attending conferences, making presentations to government customers, and fielding 
inquiries from other technology companies who have inquired about Soar Technology’s expert 
system and intelligent agents and interface technology.    

 
In addition, the interface agent system developed for this project can have applications in 

other domains with similar command and control requirements.  For situations such as natural 
disasters, riot control, event or personal security and terrorist attacks where tight coordination of 
multiple cooperating teams is crucial, crisis management is a key domain in which CIANC3 
technology can provide enhanced performance.  Other domains include factory control and 
automation, mass transit management and emergency room management.  

 
To successfully commercialize the results of this proposed research, during Phase II Soar 

Technology will invest business development effort in three parallel paths:  (1) integration into 
the FCS, (2) other military systems requiring C2 for multiple arrays of robotic entities, and (3) 
commercial markets.  The timeline for these activities is projected below. 
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For ultimate system integration and fielded applications, both military and commercial, 
our general strategy is to team, via licensing or joint venture partnerships, with larger companies 
that have deep domain knowledge, marketing, manufacturing and support capability.  While Soar 
Technology’s management has considerable experience in generating business, marketing and 
finance plans, it is our strategy to offer a unique, key part of the technology solution, not a full 
vertical market solution.  In terms of revenue from commercialization, we anticipate a 
combination of development funding during system development, royalties from procurement, 
and software and behavior maintenance/upgrade/support contracts after systems are fielded. 
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Appendix A 
 

Agent Message Types 
Message Types 
 
- Confirm 

�� Sent By:  Operator, Tasking Agent 
�� Received By:  Operator, Tasking Agent 
�� Description:  This type of message is either a request for confirmation, a confirmation, or 

a rejection of confirmation, depending on the Status parameter. 
 

- Uninitialized 
�� Sent By:  Tasking Agent 
�� Received By:  Operator 
�� Description:  This type of message is a mission milestone status update to the operator. 
 

- In-Progress 
�� Sent By:  Tasking Agent, Monitoring Agent 
�� Received By:  Operator, Tasking Agent, Coordinating Agent 
�� Description:  This type of message is a mission milestone status update. 
 

- Failed 
�� Sent By:  Tasking Agent, Monitoring Agent 
�� Received By:  Operator, Tasking Agent, Coordinating Agent 
�� Description:  This type of message is a mission milestone status update. 
 

- Complete 
�� Sent By:  Tasking Agent, Monitoring Agent 
�� Received By:  Operator, Tasking Agent, Coordinating Agent 
�� Description:  This type of message is a mission milestone status update. 
 

- In-Jeopardy 
�� Sent By:  Tasking Agent, Coordinating Agent, Monitoring Agent 
�� Received By:  Operator, Tasking Agent, Coordinating Agent 
�� Description:  This type of message is a mission milestone status update. 
 

- Request 
�� Sent By:  Tasking Agent, Coordinating Agent, Monitoring Agent 
�� Received By:  Operator, Tasking Agent, Coordinating Agent, Monitoring Agent 
�� Description:  This type of message is a request for a specific type of information from 

one agent type to another agent type or the operator. 
 

- Report 
�� Sent By:  Tasking Agent, Coordinating Agent, Monitoring Agent 
�� Received By:  Tasking Agent, Coordinating Agent, Monitoring Agent 
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�� Description:  This type of message is a report on a specific type of information from one 
agent type to another agent type or the operator. 

 
- Move 

�� Sent By:  Operator, Tasking Agent 
�� Received By:  Entity 
�� Description:  This type of message is a movement order for an entity to a specific set of 

coordinates at a specified speed. 
 
- Fire 

�� Sent By:  Tasking Agent 
�� Received By:  Entity 
�� Description:  This type of message is a direct or indirect fire order for an entity to a 

specific set of coordinates or target. 
 

- Set-ROE 
�� Sent By:  Operator, Tasking Agent 
�� Received By:  Entity 
�� Description:  This type of message sets the Rules of Engagement for an entity. 
 

- Halt 
�� Sent By:  Operator, Tasking Agent 
�� Received By:  Entity 
�� Description:  This type of message is a movement order for an entity to halt immediately. 

 
- Initiate 

�� Sent By:  Operator 
�� Received By:  Tasking Agent 
�� Description:  This type of message is a command by the Operator to a Tasking Agent 

initiating a proposed plan. 
 

- Update 
�� Sent By:  Operator 
�� Received By:  Tasking Agent 
�� Description:  This type of message is a command by the Operator to a Tasking Agent 

updating a plan already in the process of being executed. 
 

- Terminate 
�� Sent By:  Operator 
�� Received By:  Tasking Agent 
�� Description:  This type of message is a command by the Operator to a Tasking Agent 

terminating a plan in the process of being executed. 
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Example Message Content 
 To: [Operator|Tasker|Coordinator|Monitor|<Entity Callsign>] 
 From: [Operator|Tasker|Coordinator|Monitor|<Entity Callsign>] 
 Subject: [<Message Type>] 
 <Data Member Attribute1>: [<Data Member Attribute-Value1>] 
 <Data Member Attribute2>: [<Data Member Attribute-Value2>] 
 
Example Message 
 To:  Tasker 
 From:  Operator 
 Subject:  Confirm-Fire-Order 
 Status:  Confirmed
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